Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Front Med (Lausanne) ; 9: 955928, 2022.
Article in English | MEDLINE | ID: covidwho-2009876

ABSTRACT

Increased expression of angiotensin-converting enzyme 2 (ACE2) is one of the likely explanations for disease severity in patients with coronavirus disease 2019 (COVID-19). In this study, we aimed to test whether soluble ACE2 (sACE2) levels are correlated to known risk factors of severe COVID-19 including biochemical parameters, body mass index and smoking habits. We cross-sectionally evaluated serum sACE2 levels in obese or tobacco-smoking populations and compared them to those in non-obese and non-smoking healthy participants. Additionally, fibroblast growth factor-21 (FGF21) was investigated as a candidate regulator of sACE2. A total of 220 male participants aged 30-59 years undergoing an annual health checkup were enrolled in this study: 59 obese, 80 smokers, and 81 healthy. Serum sACE2 levels were significantly higher in obese participants but not in tobacco-smoking participants when compared to healthy participants. sACE2 levels were significantly correlated with total cholesterol and triglycerides but not with body mass index. Furthermore, no regulatory relationship was found between FGF21 and sACE2. Lipid metabolism disorders accompanied by upregulation of serum sACE2 may be underlying mechanisms of COVID-19 aggravation and might be a novel breakthrough treatment target.

2.
Antiviral Res ; 205: 105383, 2022 09.
Article in English | MEDLINE | ID: covidwho-1966338

ABSTRACT

The frequently emerging SARS-CoV-2 variants have weakened the effectiveness of existing COVID-19 vaccines and neutralizing antibody therapy. Nevertheless, the infections of SARS-CoV-2 variants still depend on angiotensin-converting enzyme 2 (ACE2) receptor-mediated cell entry, and thus the soluble human ACE2 (shACE2) is a potential decoy for broadly blocking SARS-CoV-2 variants. In this study, we firstly generated the recombinant AAVrh10-vectored shACE2 constructs, a kind of adeno-associated virus (AAV) serotype with pulmonary tissue tropism, and then validated its inhibition capacity against SARS-CoV-2 infection. To further optimize the minimized ACE2 functional domain candidates, a comprehensive analysis was performed to clarify the interactions between the ACE2 orthologs from various species and the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein. Based on the key interface amino acids, we designed a series of truncated ACE2 orthologs, and then assessed their potential affinity to bind to SARS-CoV-2 variants RBD in silico. Of note, we found that the 24-83aa fragment of dog ACE2 (dACE224-83) had a higher affinity to the RBD of SARS-CoV-2 variants than that of human ACE2. Importantly, AAVrh10-vectored shACE2 or dACE224-83 constructs exhibited a broadly blockage breadth against SARS-CoV-2 prototype and variants in vitro and ex vivo. Collectively, these data highlighted a promising therapeutic strategy against SARS-CoV-2 variants.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/therapy , COVID-19 Vaccines , Dogs , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Virus Internalization
3.
Adv Sci (Weinh) ; 9(27): e2201294, 2022 09.
Article in English | MEDLINE | ID: covidwho-1958672

ABSTRACT

Soluble ACE2 (sACE2) decoys are promising agents to inhibit SARS-CoV-2, as their efficiency is unlikely to be affected by escape mutations. However, their success is limited by their relatively poor potency. To address this challenge, multimeric sACE2 consisting of SunTag or MoonTag systems is developed. These systems are extremely effective in neutralizing SARS-CoV-2 in pseudoviral systems and in clinical isolates, perform better than the dimeric or trimeric sACE2, and exhibit greater than 100-fold neutralization efficiency, compared to monomeric sACE2. SunTag or MoonTag fused to a more potent sACE2 (v1) achieves a sub-nanomolar IC50 , comparable with clinical monoclonal antibodies. Pseudoviruses bearing mutations for variants of concern, including delta and omicron, are also neutralized efficiently with multimeric sACE2. Finally, therapeutic treatment of sACE2(v1)-MoonTag provides protection against SARS-CoV-2 infection in an in vivo mouse model. Therefore, highly potent multimeric sACE2 may offer a promising treatment approach against SARS-CoV-2 infections.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 Drug Treatment , Animals , Antibodies, Monoclonal/therapeutic use , Mice , SARS-CoV-2
4.
Biochimie ; 201: 139-147, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1894810

ABSTRACT

SARS-CoV-2 uses membrane bound Angiotensin-Converting Enzyme 2 (ACE2) as a key host receptor for its entry. However, inconsistent results are available in terms of shedding of membrane ACE2 and circulating levels of soluble ACE2 during SARS-CoV-2. To ascertain soluble ACE2 as an effective biomarker for the prediction of COVID-19 outcome, in the present study, we investigated the levels of plasma ACE2 during the early phase of infection in COVID-19 patients. The study involved a total of 42 COVID-19 patients along with 10 healthy controls. Plasma levels of ACE2 was determined using ELISA at the time of admission and on day 7 post admission. The association of sACE2 with D-dimer a marker for hyper-coagulation was performed using a dependence test. Compared to healthy controls, SARS-CoV-2 cases has shown a huge increase in the sACE2 at the time of admission. During the course of infection, we found a significant increase (P ≤ 0.001) in sACE2 in severe cases compared to moderate. There was a strong increase in sACE2 in cases with hypertension and diabetes mellitus. Interestingly, a strong positive correlation (P ≤ 0.001) was obtained between sACE2 and D-dimer. Thus, an excessive shedding of ACE2 during the early phase is a common phenomenon in severe form of the SARS-CoV-2. Along with D-dimer, the sACE2 levels could serve as a clinical biomarker for the prediction of disease outcome. However further studies are needed to ascertain its role in host-virus interplay.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Biomarkers , Humans , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Severity of Illness Index
5.
Life (Basel) ; 12(4)2022 Apr 12.
Article in English | MEDLINE | ID: covidwho-1785796

ABSTRACT

Background: The main mechanism of viral entry in COVID-19 infection is through the angiotensin-converting enzyme 2 (ACE2) receptor present in the lungs. Numerous studies suggested a clinical significance of risk factors, such as gender, obesity, and diabetes on the soluble form of ACE2 (sACE2) and related miRNAs in COVID-19 infection. This study aims to investigate the serum level of sACE2 and 4 miRNAs (miR-421, miR-3909, miR-212-5p, and miR-4677-3p) in COVID-19 patients and assess their associations with clinicopathological parameters. Methods: Serum samples were collected from non-diabetic and diabetic COVID-19 patients and healthy controls. sACE2 levels were quantified using ELISA, and serum miRNA levels were measured using qPCR. In addition, laboratory blood tests were retrieved from the clinical records of COVID-19 patients. Results: sACE2 levels were upregulated in COVID-19 patients regardless of sex, diabetes status, or obesity. Furthermore, the four investigated miRNAs were upregulated in COVID-19 patients and were positively correlated with each other. Furthermore, miR-421, miR-3909, and miR-4677-3p were positively associated with sACE2, suggesting a strong link between these markers. Notably, miR-212-5p was selectively upregulated in moderate, male, and non-obese COVID-19 patients. Interestingly, miR-212-5p was correlated with D-dimer, while sACE2 was correlated with coagulation tests, such as aPTT and platelets, indicating their potential as markers of coagulopathy in COVID-19. Additionally, there was a positive correlation between sACE2 and C-reactive protein in diabetic COVID-19 patients, indicating a promising role of this marker in the inflammatory status of these patients. Conclusions: sACE2 and its regulatory miRNAs were upregulated and correlated with laboratory investigations of COVID-19 patients, thus indicating their clinical significance as biomarkers in COVID-19 infection.

6.
BBA Adv ; 2: 100044, 2022.
Article in English | MEDLINE | ID: covidwho-1676410

ABSTRACT

Once inhaled, SARS-CoV-2 particles enter respiratory ciliated cells by interacting with angiotensin converting enzyme 2 (ACE2). Understanding the nature of ACE2 within airway tissue has become a recent focus particularly in light of the COVID-19 pandemic. Airway mucociliary tissue was generated in-vitro using primary human nasal epithelial cells and the air-liquid interface (ALI) model of differentiation. Using ALI tissue, three distinct transcript variants of ACE2 were identified. One transcript encodes the documented full-length ACE2 protein. The other two transcripts are unique truncated isoforms, that until recently had only been predicted to exist via sequence analysis software. Quantitative PCR revealed that all three transcript variants are expressed throughout differentiation of airway mucociliary epithelia. Immunofluorescence analysis of individual ACE2 protein isoforms exogenously expressed in cell-lines revealed similar abilities to localize in the plasma membrane and interact with the SARS CoV 2 spike receptor binding domain. Immunohistochemistry on differentiated ALI tissue using antibodies to either the N-term or C-term of ACE2 revealed both overlapping and distinct signals in cells, most notably only the ACE2 C-term antibody displayed plasma-membrane localization. We also demonstrate that ACE2 protein shedding is different in ALI Tissue compared to ACE2-transfected cell lines, and that ACE2 is released from both the apical and basal surfaces of ALI tissue. Together, our data highlights various facets of ACE2 transcripts and protein in airway mucociliary tissue that may represent variables which impact an individual's susceptibility to SARS-CoV-2 infection, or the severity of Covid-19.

7.
Viruses ; 13(11)2021 11 08.
Article in English | MEDLINE | ID: covidwho-1512697

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells mainly by the angiotensin converting enzyme 2 (ACE2) receptor, which can recognize the spike (S) protein by its extracellular domain. Previously, recombinant soluble ACE2 (sACE2) has been clinically used as a therapeutic treatment for cardiovascular diseases. Recent data demonstrated that sACE2 can also be exploited as a decoy to effectively inhibit the cell entry of SARS-CoV-2, through blocking SARS-CoV-2 binding to membrane-anchored ACE2. In this study, we summarized the current findings on the optimized sACE2-based strategies as a therapeutic agent, including Fc fusion to prolong the half-life of sACE2, deep mutagenesis to create high-affinity decoys for SARS-CoV-2, or designing the truncated functional fragments to enhance its safety, among others. Considering that COVID-19 patients are often accompanied by manifestations of cardiovascular complications, we think that administration of sACE2 in COVID-19 patients may be a promising therapeutic strategy to simultaneously treat both cardiovascular diseases and SARS-CoV-2 infection. This review would provide insights for the development of novel therapeutic agents against the COVID-19 pandemic.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/therapeutic use , COVID-19 Drug Treatment , COVID-19/virology , Cardiovascular Diseases/drug therapy , Recombinant Fusion Proteins/therapeutic use , SARS-CoV-2 , Animals , COVID-19/complications , Cardiovascular Diseases/complications , Humans , Peptidyl-Dipeptidase A , Protein Binding , Protein Engineering , Receptors, Virus/metabolism , Receptors, Virus/therapeutic use , Spike Glycoprotein, Coronavirus
8.
Front Cell Dev Biol ; 9: 717587, 2021.
Article in English | MEDLINE | ID: covidwho-1430687

ABSTRACT

Currently, the COVID-19 pandemic is an international challenge, largely due to lack of effective therapies. Pharmacotherapy has not yet been able to find a definitive treatment for COVID-19. Since SARS-CoV-2 affects several organs, treatment strategies that target the virus in a wider range are expected to be ultimately more successful. To this end, a two-step treatment strategy has been presented. In the first phase of the disease, when the patient is newly infected with the virus and the cytokine storm has not yet been developed, a chimeric peptide is used to inhibit virus entry into the host cell cytosol (by inhibiting endosomal pH acidification) and viral replication. After the virus entry and decrease of angiotensin converting enzyme 2 (ACE2) level, some people are unable to properly compensate for the ACE2 pathway and progress toward the cytokine storm. In the beginning of the cytokine storm, sACE2 protein is very effective in regulating the immune system toward the anti-inflammatory pathway, including M2 macrophages. Hence, the genes of 8P9R chimeric peptide and sACE2 would be inserted in an episomal vector with a separate promoter for each gene: the chimeric peptide gene promoter is a CMV promoter, while the sACE2 gene promoter is a NF-κB-sensitive promoter. The NF-κB-sensitive promoter induces the expression of sACE2 gene soon after elevation of NF-κB which is the main transcription factor of inflammatory genes. Thus, as the expression of inflammatory cytokines increases, the expression of sACE2 increases simultaneously. In this condition, sACE2 can prevent the cytokine storm by inhibiting the pro-inflammatory pathways. To deliver the designed vector to the target cells, mesenchymal stem cell-derived (MSC-derived) exosome-liposome hybrids are used. Herein, the strategy can be considered as a personalized clinical therapy for COVID-19, that can prevent morbidity and mortality in the future.

9.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 19.
Article in English | MEDLINE | ID: covidwho-1323319

ABSTRACT

A damaged endothelium is an underlying condition of the many complications of COVID-19 patients. The increased mortality risk associated with diseases that have underlying endothelial dysfunction, such as acute respiratory distress syndrome (ARDS), suggests that endothelial (e) nitric oxide synthase (NOS)-derived nitric oxide could be an important defense mechanism. Additionally, intravenous recombinant angiotensin converting enzyme 2 (ACE2) was recently reported as an effective therapy in severe COVID-19, by blocking viral entry, and thus reducing lung injury. Very few studies exist on the prognostic value of endothelium-related protective molecules in severe COVID-19 disease. To this end, serum levels of eNOS, inducible (i) NOS, adrenomedullin (ADM), soluble (s) ACE2 levels, and serum (s) ACE activity were measured on hospital admission in 89 COVID-19 patients, hospitalized either in a ward or ICU, of whom 68 had ARDS, while 21 did not. In our cohort, the COVID-19-ARDS patients had considerably lower eNOS levels compared to the COVID-19 non-ARDS patients. On the other hand, sACE2 was significantly higher in the ARDS patients. iNOS, ADM and sACE activity did not differ. Our results might support the notion of two distinct defense mechanisms in COVID-19-derived ARDS; eNOS-derived nitric oxide could be one of them, while the dramatic rise in sACE2 may also represent an endogenous mechanism involved in severe COVID-19 complications, such as ARDS. These results could provide insight to therapeutical applications in COVID-19.

10.
Cell ; 184(8): 2212-2228.e12, 2021 04 15.
Article in English | MEDLINE | ID: covidwho-1116430

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause acute respiratory disease and multiorgan failure. Finding human host factors that are essential for SARS-CoV-2 infection could facilitate the formulation of treatment strategies. Using a human kidney cell line-HK-2-that is highly susceptible to SARS-CoV-2, we performed a genome-wide RNAi screen and identified virus dependency factors (VDFs), which play regulatory roles in biological pathways linked to clinical manifestations of SARS-CoV-2 infection. We found a role for a secretory form of SARS-CoV-2 receptor, soluble angiotensin converting enzyme 2 (sACE2), in SARS-CoV-2 infection. Further investigation revealed that SARS-CoV-2 exploits receptor-mediated endocytosis through interaction between its spike with sACE2 or sACE2-vasopressin via AT1 or AVPR1B, respectively. Our identification of VDFs and the regulatory effect of sACE2 on SARS-CoV-2 infection shed insight into pathogenesis and cell entry mechanisms of SARS-CoV-2 as well as potential treatment strategies for COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Host Microbial Interactions/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vasopressins/immunology , Virus Internalization , COVID-19/immunology , COVID-19/virology , Cell Line , Humans , Protein Binding
11.
Hum Vaccin Immunother ; 17(1): 92-97, 2021 01 02.
Article in English | MEDLINE | ID: covidwho-1066191

ABSTRACT

The third outbreak of coronavirus (CoV) infection (after SARS-CoV and MERS-CoV) caused by a novel CoV (SARS-CoV-2) of the genus Beta-coronavirus has become a global pandemic. CoVs are enveloped viruses whose proteins include spike (S), membrane (M), and envelope (E) which are embedded in the viral envelope. The glycosylated S protein, which forms homo-trimeric spikes on the surface of the viral particle, mediates viral entry into host cells. SARS-CoV-2, like SARS-CoV, uses the Angiotensin-Converting Enzyme 2 (ACE2) cell surface protein for cellular entry. An attractive anti-viral approach is targeting virus entry into cells, for which three strategies are suggested: 1) direct targeting of the viral glycoprotein; 2) targeting the viral receptor on the cell surface; and 3) using soluble (s) ACE2 that binds to S protein thereby neutralizing the virus. In this article, the advantages and disadvantages of these strategies are explained. Moreover, we propose that fusion of the sACE2 to anti-CD16 to produce a bi-specific molecule could be a promising anti-viral strategy.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , COVID-19/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Spike Glycoprotein, Coronavirus/metabolism , Antibodies, Neutralizing/metabolism , COVID-19/metabolism , Coronavirus Infections/metabolism , Humans , Protein Binding
12.
JACC Basic Transl Sci ; 5(5): 501-517, 2020 May.
Article in English | MEDLINE | ID: covidwho-1023614

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic has resulted in a proliferation of clinical trials designed to slow the spread of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Many therapeutic agents that are being used to treat patients with COVID-19 are repurposed treatments for influenza, Ebola, or for malaria that were developed decades ago and are unlikely to be familiar to the cardiovascular and cardio-oncology communities. Here, the authors provide a foundation for cardiovascular and cardio-oncology physicians on the front line providing care to patients with COVID-19, so that they may better understand the emerging cardiovascular epidemiology and the biological rationale for the clinical trials that are ongoing for the treatment of patients with COVID-19.

13.
Obes Med ; 22: 100312, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1009781

ABSTRACT

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a pandemic since WHO made the statement on March 11, 2020. The infection is causing a high mortality in old people, especially those with obesity, type 2 diabetes (T2D) or cardiovascular diseases (CVD). Extra cautions are needed in the treatment of those patients. The CVD drugs ACEIs and ARBs, as well as the T2D drugs GLP-1R agonists, were shown to activate angiotensin-converting enzyme 2 (ACE2) expression in experimental animals. Elevated ACE2 expression may accelerate virus entrance into the host cells during the infection for its replication. However, expression of the soluble ACE2, may neutralize the virus to limit the infection and replication. Given that obese, diabetes and CVD patients often take those medicines in the treatment and prevention of blood pressure and glucose elevation, it remains to be determined whether those medicines represent friend or foe in the treatment of COVID-19. We suggest that retrospective studies should be conducted to determine the exact impact of those medicines in obese, diabetic, or CVD patients who had COVID-19. Results obtained will provide guidance whether those drugs can be utilized in COVID-19 patients with obesity, diabetic, or CVD.

14.
J Adv Res ; 31: 49-60, 2021 07.
Article in English | MEDLINE | ID: covidwho-1009643

ABSTRACT

Background: The recent ongoing outbreak of coronavirus disease 2019 (COVID-19), still is an unsolved problem with a growing rate of infected cases and mortality worldwide. The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is targeting the angiotensin-converting enzyme 2 (ACE2) receptor and mostly causes a respiratory illness. Although acquired and resistance immunity is one of the most important aspects of alleviating the trend of the current pandemic; however, there is still a big gap of knowledge regarding the infection process, immunopathogenesis, recovery, and reinfection. Aim of Review: To answer the questions regarding "the potential and probability of reinfection in COVID-19 infected cases" or "the efficiency and duration of SARS-CoV-2 infection-induced immunity against reinfection" we critically evaluated the current reports on SARS-CoV-2 immunity and reinfection with special emphasis on comparative studies using animal models that generalize their finding about protection and reinfection. Also, the contribution of humoral immunity in the process of COVID-19 recovery and the role of ACE2 in virus infectivity and pathogenesis has been discussed. Furthermore, innate and cellular immunity and inflammatory responses in the disease and recovery conditions are reviewed and an overall outline of immunologic aspects of COVID-19 progression and recovery in three different stages are presented. Finally, we categorized the infected cases into four different groups based on the acquired immunity and the potential for reinfection. Key Scientific Concepts of Review: In this review paper, we proposed a new strategy to predict the potential of reinfection in each identified category. This classification may help to distribute resources more meticulously to determine: who needs to be serologically tested for SARS-CoV-2 neutralizing antibodies, what percentage of the population is immune to the virus, and who needs to be vaccinated.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Reinfection/immunology , SARS-CoV-2/immunology , Vaccination/methods , Angiotensin-Converting Enzyme 2/metabolism , Animals , Disease Progression , Humans , Immunity, Humoral , Inflammation/immunology , Inflammation/metabolism , Macaca/immunology , Macaca/virology , Pandemics , Reinfection/virology , T-Lymphocytes/immunology
15.
Toxicol Rep ; 7: 1366-1372, 2020.
Article in English | MEDLINE | ID: covidwho-837126

ABSTRACT

The study aimed to validate the proficiency of nicotine binding with the soluble angiotensin-converting enzyme II receptor (sACE2) with or without SARS-CoV-2 in the context of its binding affinity. Modelled human sACE2 and the spike (S1) protein of Indian SARS-CoV-2 (INS1) docked with each other. On the other hand, nicotine docked with sACE2 in the presence or absence of SARS-CoV-2. Nicotine established a stable interaction with negatively charged Asp368 of sACE2, which in turn binds with amino acids like Thr362, Lys363, Thr365, Thr371, and Ala372. In the presence of nicotine, INS1 and sACE2 showed a reduced binding affinity score of -12.6 kcal/mol (Vs -15.7 kcal/mol without nicotine), and a lowered interface area of 1933.6 Å2 (Vs 2057.3Å2 without nicotine). The neuronal nicotinic acetylcholine receptor (nN-AChR) and angiotensin-converting enzyme 2 (ACE2) receptor showed 19.85% sequence identity among themselves. Following these receptors possessed conserved Trp302 and Cys344 amino acids between them for nicotine binding. However, nicotine showed a higher binding affinity score of -6.33 kcal/mol for the sACE2-INS1 complex than the sACE2 alone with -5.24 kcal/mol. A lowered inhibitory constant value of 22.95µM recorded while nicotine interacted with the sACE2-INS1 complex over the sACE2 alone with 151.69 µM. In summary, nicotine showed a profound binding affinity for the sACE2-INS1 complex than the sACE2 alone paving for the clinical trials to validate its therapeutic efficacy as a bitter compound against the SARS-CoV-2 virulence.

16.
JACC CardioOncol ; 2(2): 254-269, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-72216

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic has resulted in a proliferation of clinical trials designed to slow the spread of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Many therapeutic agents that are being used to treat patients with COVID-19 are repurposed treatments for influenza, Ebola, or for malaria that were developed decades ago and are unlikely to be familiar to the cardiovascular and cardio-oncology communities. Here, we provide a foundation for cardiovascular and cardio-oncology physicians on the front line providing care to patients with COVID-19, so that they may better understand the emerging cardiovascular epidemiology and the biological rationale for the clinical trials that are ongoing for the treatment of patients with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL